
EasyNMEA Documentation
Release 0.1.0

Eduardo Ponz

Oct 22, 2021

CONTENTS

1 Getting Started 1
1.1 Run docker knowing the specific serial device . 1
1.2 Run docker allowing for plug-unplug connectivity . 1

2 Installation 3
2.1 Build and Install on Ubuntu . 3

2.1.1 Prerequisites . 3
2.1.2 Dependencies . 3
2.1.3 Build . 4
2.1.4 Install . 4

2.2 Build and Install on Windows . 4
2.2.1 Prerequisites . 4
2.2.2 Dependencies . 5
2.2.3 Build . 5
2.2.4 Install . 5

2.3 Build and Install Documentation . 5
2.3.1 Environment Setup . 6
2.3.2 Build . 6
2.3.3 Install . 6
2.3.4 Simulate Read The Docs Build . 6

2.4 CMake Options . 7

3 Usage 9

4 NMEA 0183 Data Types 11
4.1 GPGGA . 11

5 Build and Run Examples 13
5.1 Build Examples . 13
5.2 GPGGA Example . 13

6 API Reference 15
6.1 EasyNmea . 15
6.2 NMEA 0183 Data Types . 17

6.2.1 NMEA0183Data . 17
6.2.2 GPGGAData . 18

6.3 Types . 19
6.3.1 Bitmask . 19
6.3.2 NMEA0183DataKind . 20
6.3.3 NMEA0183DataKindMask . 20
6.3.4 ReturnCode . 20

i

7 Developer Documentation 23
7.1 Library Architecture . 23

7.1.1 API Level . 24
7.1.2 Implementation Level . 24
7.1.3 Serial Interface Level . 25

7.2 Testing Infrastructure . 26
7.2.1 Testing Framework . 26
7.2.2 Build Tests . 27
7.2.3 Directories . 27
7.2.4 Automated Testing Jobs . 27
7.2.5 Code Coverage Reporting . 28
7.2.6 Code Quality Analysis . 28

7.3 System Tests . 28
7.4 Unit Tests . 31

7.4.1 NMEA 0183 Data Types Unit Tests . 31
7.4.2 EasyNmea Unit Tests . 31
7.4.3 EasyNmeaCoder Unit Tests . 34
7.4.4 EasyNmeaImpl Unit Tests . 35
7.4.5 SerialInterface Unit Tests . 38

7.5 Documentation Testing . 39

Index 41

ii

CHAPTER

ONE

GETTING STARTED

Before doing anything else, you can get a flavor of the EasyNMEA capabilities by checking out the easynmea Docker
image for Ubuntu. This image ships an already built EasyNMEA with compiled examples that you can use to get some
readings out of your NMEA sensor without building anything on your side. If you do not have the Docker Engine
already installed, you can install it following this tutorial. Then, there are two options for running the container:

• Run docker knowing the specific serial device

• Run docker allowing for plug-unplug connectivity

1.1 Run docker knowing the specific serial device

If your NMEA module is already connected to a serial port and it is not going to be unplugged, then you can just share
that device with the container:

docker run -it --device=<path_to_device> eduponz/easynmea bash

Then, inside the container, you can run the GPGGA example with:

/root/easynmea/build/examples/gpgga_example -b <baudrate> -p <path_to_device>

1.2 Run docker allowing for plug-unplug connectivity

If your module may be unplug and plug while the container is running, you can still share the serial port with the
Docker container by sharing all the devices of the same cgroup. Plug your device and get its cgroup with:

ls -l <path_to_device> | awk '{print substr($5, 1, length($5)-1)}'

Then, run the container:

docker run -it -v /dev:/dev --device-cgroup-rule='c <device cgroup>:* rmw' eduponz/
→˓easynmea bash

Finally, inside the container, you can run the GPGGA example as before:

/root/easynmea/build/examples/gpgga_example -b <baudrate> -p <path_to_device>

1

https://hub.docker.com/repository/docker/eduponz/easynmea
https://www.docker.com/
https://docs.docker.com/engine/install/ubuntu/

EasyNMEA Documentation, Release 0.1.0

2 Chapter 1. Getting Started

CHAPTER

TWO

INSTALLATION

EasyNMEA is a cross-platform C++ library built and installed using CMake. In this guide, you can find instructions
on how to build and install the library in different platforms, as well as how to build the documentation, and what
configuration options can be applied at compilation time.

2.1 Build and Install on Ubuntu

This guide describes the process of building and installing EasyNMEA on Ubuntu platforms:

• Prerequisites

• Dependencies

• Build

• Install

2.1.1 Prerequisites

To build and install EasyNMEA, some external tools are required.

sudo apt update && sudo apt install -y \
cmake \
g++ \
wget \
git \
python3-pip

2.1.2 Dependencies

EasyNMEA depends on Asio, a cross-platform C++ library for network and low-level I/O programming that provides
a consistent asynchronous model, which is used to interact with the serial ports. This can be installed with:

sudo apt update && sudo apt install -y libasio-dev

3

https://cmake.org/
https://think-async.com/Asio/

EasyNMEA Documentation, Release 0.1.0

2.1.3 Build

Once the prerequisites and dependencies are installed, EasyNMEA can be built with the help of CMake by running:

cd ~
git clone https://github.com/EduPonz/easynmea.git
cd easynmea
mkdir build && cd build
cmake ..
cmake --build .

Note: For more information about compilation options please refer to CMake Options.

2.1.4 Install

Once the library is built, in can be installed in a user specified directory with:

cd ~/easynmea/build
cmake .. -DCMAKE_INSTALL_PREFIX=<user-specified-dir>
cmake --build . --target install

Alternatively, it can also be installed system-wide with:

cd ~/easynmea/build
cmake ..
cmake --build . --target install

2.2 Build and Install on Windows

This guide describes the process of building and installing EasyNMEA on Windows platforms:

• Prerequisites

• Dependencies

• Build

• Install

2.2.1 Prerequisites

To build and install EasyNMEA, some external tools are required.

• CMake

• Visual Studio

• Wget

• Git

• Chocolatey

4 Chapter 2. Installation

https://cmake.org/
https://visualstudio.microsoft.com/
https://www.gnu.org/software/wget/
https://git-scm.com/
https://chocolatey.org/

EasyNMEA Documentation, Release 0.1.0

• pip3

2.2.2 Dependencies

EasyNMEA depends on Asio, a cross-platform C++ library for network and low-level I/O programming that provides
a consistent asynchronous model, which is used to interact with the serial ports. Chocolatey can be used to install Asio
on Windows platforms. Download the package and run:

choco install -y -s <download_dir> asio

Where <download_dir> is the directory into which the package has been downloaded.

2.2.3 Build

Once the prerequisites and dependencies are installed, EasyNMEA can be built with CMake by running:

cd ~
git clone https://github.com/EduPonz/easynmea.git
cd easynmea
mkdir build && cd build
cmake ..
cmake --build .

Note: For more information about compilation options please refer to CMake Options.

2.2.4 Install

Once the library is built, in can be installed in a user specified directory with:

cd ~/easynmea/build
cmake .. -DCMAKE_INSTALL_PREFIX=<user-specified-dir>
cmake --build . --target install

Alternatively, it can also be installed system-wide with:

cd ~/easynmea/build
cmake ..
cmake --build . --target install

2.3 Build and Install Documentation

Important: This guide assumes that the library as been built following the steps outlined in Build and Install on
Ubuntu. Else, paths might need to be adjusted to align with the followed procedure.

EasyNMEA’s documentation is comprised of Doxygen and Sphinx HTML output. The process of building the docu-
mentation entails installation of additional tools for both the Doxygen and Sphinx documentations.

2.3. Build and Install Documentation 5

https://docs.python.org/3/installing/index.html
https://think-async.com/Asio/
https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://www.doxygen.nl/index.html
https://www.sphinx-doc.org/en/master/

EasyNMEA Documentation, Release 0.1.0

2.3.1 Environment Setup

To ease the development process, and to avoid version incompatibilities or clashes, this guide describes the process of
building the documentation using Python3 Virtual Environments. Before setting up the environment, Doxygen needs
to be installed. Install venv and Doxygen, and create a virtual environment and install the necessary tools with:

cd ~
sudo apt update && sudo apt install -y python3-venv doxygen plantuml
python3 -m venv easynmea_venv
source easynmea_venv/bin/activate
pip3 install -r ~/easynmea/docs/requirements.txt

2.3.2 Build

After setting up the environment, the documentation can be built with:

source ~/easynmea_venv/bin/activate
cd ~/easynmea/build
cmake .. -DBUILD_DOCUMENTATION=ON -DCMAKE_INSTALL_PREFIX=<user-specified-dir>
cmake --build .

2.3.3 Install

After building the documentation, it can be installed with:

source ~/easynmea_venv/bin/activate
cd ~/easynmea/build
cmake --build . --target install

2.3.4 Simulate Read The Docs Build

To simulate the process followed on the Read The Docs <https://readthedocs.org/> to build this documentation, run:

source ~/easynmea_venv/bin/activate
cd ~/easynmea
rm -rf build # Just in case
READTHEDOCS=True sphinx-build \

-b html \
-D breathe_projects.easynmea=<abs_path_to_docs_repo>/build/docs/doxygen/xml \
-d <abs_path_to_docs_repo>/build/docs/doctrees \
docs <abs_path_to_docs_repo>/build/docs/sphinx/html

6 Chapter 2. Installation

https://docs.python.org/3/tutorial/venv.html

EasyNMEA Documentation, Release 0.1.0

2.4 CMake Options

EasyNMEA provides several CMake options that can be used to build or exclude certain library modules.

Option Description Pos-
sible
values

De-
fault

BUILD_DOCUMENTATIONGenerates Doxygen and Sphinx documentation (see Build and Install
Documentation)

ON |
OFF

OFF

BUILD_LIBRARY_TESTSBuild the library tests. ON OFF OFF
BUILD_DOCUMENTATION_TESTSBuild the library documentation tests. Setting this ON will set

BUILD_DOCUMENTATION to ON
ON OFF OFF

BUILD_TESTS Build the library and documentation tests. Setting this ON will set
BUILD_LIBRARY_TESTS and BUILD_DOCUMENTATION_TESTS to
ON

ON OFF OFF

BUILD_EXAMPLES Builds EasyNMEA examples ON |
OFF

OFF

GCC_CODE_COVERAGEBuild the library with code coverage support. This flag only take action
when using GCC.

ON OFF OFF

2.4. CMake Options 7

EasyNMEA Documentation, Release 0.1.0

8 Chapter 2. Installation

CHAPTER

THREE

USAGE

EasyNMEA provides the EasyNmea class, which uses NMEA 0183 sentences to extract NMEA information from
the NMEA devices. It provides an easy-to-use API with which applications can open a serial communication channel
with the NMEA device, wait until some data from one or more NMEA 0183 sentences arrives, retrieve it and digest it
in an understandable manner, and close the connection.

The following snippet shows how to use EasyNmea::open(), EasyNmea::wait_for_data(),
EasyNmea::take_next(), and EasyNmea::close() APIs to wait until GPGGAData data is received, using
a NMEA0183DataKindMask set to NMEA0183DataKind::GPGGA. For more information about the supported
NMEA 0183 sentences and their meaning, please refer to NMEA 0183 Data Types.

using namespace eduponz::easynmea;
// Create an EasyNmea object
EasyNmea easynmea;
// Open the serial port
if (easynmea.open("/dev/ttyACM0", 9600) == ReturnCode::RETURN_CODE_OK)
{

// Create a mask to only wait on data from specific NMEA 0183 sentences
NMEA0183DataKindMask data_kind_mask = NMEA0183DataKind::GPGGA;
// This call will block until some data of any of the kinds specified in the mask

→˓is
// available.
while (easynmea.wait_for_data(data_kind_mask) == ReturnCode::RETURN_CODE_OK)
{

// Take all the available data samples of type GPGGA
GPGGAData gpgga_data;
while (easynmea.take_next(gpgga_data) == ReturnCode::RETURN_CODE_OK)
{

// Do something with the GNSS data
std::cout << "GNSS position: (" << gpgga_data.latitude << "; "

<< gpgga_data.longitude << ")" << std::endl;
}

}
}
// Close the serial connection
easynmea.close();

9

https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard

EasyNMEA Documentation, Release 0.1.0

10 Chapter 3. Usage

CHAPTER

FOUR

NMEA 0183 DATA TYPES

This section presents the data types associated with the NMEA 0183 sentences that are interpreted by EasyNMEA.

4.1 GPGGA

The GPGGAData provides Global Positioning System Fix Data, meaning that it is advertised only when the GNSS
device has been able to acquire a fix. The GPGGAData provides information about:

• Timestamp; always in hhmmss.milliseconds.

• Latitude; always in degrees referred to North.

• Longitude; always in degrees referred to East.

• Fix: whether there is a fix position. 0 means no fix, 1 means fix, and 2 means differential fix.

• Satellites on view: Number of satellites that the GNSS device can see.

• Horizontal precision; always in meters.

• Altitude over sea level; always in meters.

11

https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard

EasyNMEA Documentation, Release 0.1.0

12 Chapter 4. NMEA 0183 Data Types

CHAPTER

FIVE

BUILD AND RUN EXAMPLES

This page presents how to build and run all the EasyNMEA examples, as well as showcasing sample outputs.

5.1 Build Examples

Note: This section assumes that the guides outlined in Installation have been followed.

Building the EasyNMEA examples is as easy as add the CMake option -DBUILD_EXAMPLES=ON on CMake’s
configuration step:

cd ~/easynmea/build
cmake .. -DCMAKE_INSTALL_PREFIX=<user-specified-dir> -DBUILD_EXAMPLES=ON
cmake --build . --target install

5.2 GPGGA Example

The GPGGA example showcases how to get Global Positioning System Fix Data out of GNSS devices, which they
advertise using the NMEA 0183 GPGGA sentence. Once the examples have been built, the GPGGA example can be
run with:

cd <user-specified-dir>/examples/bin
./gpgga_example --serial_port /dev/ttyACM0 --baudrate 9600

An output example from gpgga_example would be:

Serial port '/dev/ttyACM0' opened. Baudrate: 9600
Please press CTRL-C to stop the example

************** NEW GPGGA SAMPLE **************
Elapsed time ---------> 3468
--
GPGGA Data - GNSS Position Fix
==============================
Message --------------> $GPGGA,072706.000,5703.1740,N,00954.9459,E,1,8,1.28,-21.2,M,
→˓42.5,M,,*4E
Timestamp ------------> 72706
Latitude -------------> 57.0529º N
Longitude ------------> 9.91576º E

(continues on next page)

13

https://github.com/EduPonz/easynmea/tree/main/examples
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard

EasyNMEA Documentation, Release 0.1.0

(continued from previous page)

Fix ------------------> 1
Number of satellites -> 8
Horizontal precision -> 1.28
Altitude -------------> -21.2

14 Chapter 5. Build and Run Examples

CHAPTER

SIX

API REFERENCE

This sections constitutes a detailed description of EasyNMEA public API.

6.1 EasyNmea

class eduponz::easynmea::EasyNmea
This class provides an interface with NMEA modules using NMEA 0183 protocol over serial connections.

It can be used to:

• Open and close serial connection with the modules.

• Wait for specific NMEA sentences to be received.

• Read incoming NMEA data in a parsed and understandable manner.

Public Functions

EasyNmea() noexcept
Default constructor. Constructs a EasyNmea.

~EasyNmea() noexcept
Virtual default destructor.

ReturnCode open(const char *serial_port, long baudrate) noexcept
Open a serial connection.

It opens a serial connection on a given port with a given baudrate; given that the connection was not
previously opened.

Pre The EasyNmea does not have any serial port opened. That is, either it is the first call to open(), or
close() has been called before open().

Return open() can return:

• ReturnCode::RETURN_CODE_OK if the port is opened correctly.

• ReturnCode::RETURN_CODE_ERROR is the port could not be opened.

• ReturnCode::RETURN_CODE_ILLEGAL_OPERATION if a previous call to open was per-
formed in the same EasyNmea instance, regardless of the port.

Parameters

• [in] serial_port: A string containing the serial port name.

• [in] baudrate: The communication baudrate.

15

EasyNMEA Documentation, Release 0.1.0

bool is_open() noexcept
Check whether a serial connection is opened

Return true if there is an opened serial connection; false otherwise.

ReturnCode close() noexcept
Close a serial connection

Pre A successful call to open() has been performed.

Return close() can return:

• ReturnCode::RETURN_CODE_OK if the connection was successfully closed.

• ReturnCode::RETURN_CODE_ERROR if the connection could not be closed.

• ReturnCode::RETURN_CODE_ILLEGAL_OPERATION if there was not open connection.

ReturnCode take_next(GPGGAData &gpgga) noexcept
Take the next untaken GPGGA data sample available.

EasyNmea stores up to the last 10 reported GPGGA data samples. take_next() is used to retrieve the
oldest untaken GPGGA sample.

Return take_next() can return:

• ReturnCode::RETURN_CODE_OK if the operation succeeded.

• ReturnCode::RETURN_CODE_NO_DATA if there are not any untaken GPGGAData samples.

Parameters

• [out] gpgga: A GPGGAData instance which will be populated with the sample.

ReturnCode wait_for_data(NMEA0183DataKindMask data_mask =
NMEA0183DataKindMask::all(), std::chrono::milliseconds timeout =
std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::hours(8760)))
noexcept

Block the calling thread until there is data available.

Block the calling thread until data of the specified kind or kinds is available for the taking, or the timeout
expires.

Return wait_for_data() can return:

• ReturnCode::RETURN_CODE_OK if a sample of any of the kinds specified in the mask has been
received.

• ReturnCode::RETURN_CODE_TIMEOUT if the timeout was reached without receiving any data
sample of the kinds specified in the data_mask.

• ReturnCode::RETURN_CODE_ILLEGAL_OPERATION if there was not open connection.

• ReturnCode::RETURN_CODE_ERROR if some other thread called close() on the
EasyNmea instance, which unblocks any wait_for_data() calls.

Parameters

• [in] data_mask: A NMEA0183DataKindMask used to specify on which data kinds
should the call return, thus unblocking the calling thread. When wait_for_data
returns data_mask holds the types of data that have been received. Defaults to
NMEA0183DataKindMask::all().

16 Chapter 6. API Reference

EasyNMEA Documentation, Release 0.1.0

• [in] timeout: The time in millisecond after which the function must return even when no
data was received. Defaults to 8760 hours (1 year).

6.2 NMEA 0183 Data Types

6.2.1 NMEA0183Data

struct eduponz::easynmea::NMEA0183Data
Base struct for all NMEA 0183 Data types.

Subclassed by eduponz::easynmea::GPGGAData

Public Functions

NMEA0183Data(NMEA0183DataKind data_kind = NMEA0183DataKind::INVALID) noexcept
Default constructor; it empty-initializes the struct

Parameters

• [in] data_kind: The NMEA0183DataKind of the data instance. Defaults to
NMEA0183DataKind::INVALID

~NMEA0183Data() = default
Default virtual constructor.

bool operator==(const NMEA0183Data &other) const noexcept
Check whether a NMEA0183Data is equal to this one

Return true if equal; false otherwise

Parameters

• [in] other: A constant reference to the NMEA0183Data to compare with this one

bool operator!=(const NMEA0183Data &other) const noexcept
Check whether a NMEA0183Data is different from this one

Return true if different; false otherwise

Parameters

• [in] other: A constant reference to the NMEA0183Data to compare with this one

Public Members

NMEA0183DataKind kind
The NMEA0183DataKind of the data.

6.2. NMEA 0183 Data Types 17

EasyNMEA Documentation, Release 0.1.0

6.2.2 GPGGAData

struct eduponz::easynmea::GPGGAData : public eduponz::easynmea::NMEA0183Data
Struct for data from GPGGA sentences.

Public Functions

GPGGAData() noexcept
Default constructor; it empty-initializes the struct, setting kind to NMEA0183DataKind::GPGGA

bool operator==(const GPGGAData &other) const noexcept
Check whether a GPGGAData is equal to this one

Return true if equal; false otherwise

Parameters

• [in] other: A constant reference to the GPGGAData to compare with this one

bool operator!=(const GPGGAData &other) const noexcept
Check whether a GPGGAData is different from this one

Return true if different; false otherwise

Parameters

• [in] other: A constant reference to the GPGGAData to compare with this one

Public Members

float timestamp
UTC time hhmmss.milliseconds.

float latitude
Latitude in degrees referred to North.

float longitude
Longitude in degrees referred to East.

uint16_t fix
GNSS Fix

• 0: no fix

• 1 -> fix

• 2 -> differential fix

uint16_t satellites_on_view
Number of satellites on view.

float horizontal_precision
GNSS horizontal precision expressed in meters.

float altitude
GNSS reported altitude over sea level expressed in meters.

float height_of_geoid
Height of geoid above WGS84 ellipsoid in meters.

18 Chapter 6. API Reference

EasyNMEA Documentation, Release 0.1.0

float dgps_last_update
Seconds since last DGPS update.

uint16_t dgps_reference_station_id
DGPS reference station ID.

6.3 Types

6.3.1 Bitmask

template<typename E>
class Bitmask

Generic bitmask for an enumerated type.

This class can be used as a companion bitmask of any enumerated type whose values have been constructed so
that a single bit is set for each enum value. The enumerated values can be seen as the names of the bits in the
bitmask.

Bitwise operations are defined between masks of the same type, between a mask and its companion enumeration,
and between enumerated values.

enum my_enum
{

RED = 1 << 0,
GREEN = 1 << 1,
BLUE = 1 << 2

};

// Combine enumerated labels to create a mask
Bitmask<my_enum> yellow_mask = RED | GREEN;

// Combine a mask with a value to create a new mask
Bitmask<my_enum> white_mask = yellow_mask | BLUE;

// Flip all the bits in the mask
Bitmask<my_enum> black_mask = ~white_mask;

// Set a bit in the mask
black_mask.set(RED);

// Test if a bit is set in the mask
bool is_red = white_mask.is_set(RED);

Template Parameters

• E: The enumerated type for which the bitmask is constructed

6.3. Types 19

EasyNMEA Documentation, Release 0.1.0

6.3.2 NMEA0183DataKind

enum eduponz::easynmea::NMEA0183DataKind
Holds all the supported NMEA 0183 sentences.

Values:

enumerator INVALID = 0
Represents no valid data kind.

enumerator GPGGA = 1 << 0
Global Positioning System Fix Data.

6.3.3 NMEA0183DataKindMask

using eduponz::easynmea::NMEA0183DataKindMask = Bitmask<NMEA0183DataKind>
Bitmask of NMEA0183 datas.

Values of NMEA0183DataKind can be combined with the ‘|’ operator to build the mask:

NMEA0183DataKindMask mask = NMEA0183DataKind::GPGGA | NMEA0183DataKind::INVALID;

See Bitmask

6.3.4 ReturnCode

class eduponz::easynmea::ReturnCode
Provides understandable return codes for the different operations that the library performs.

These return codes can be easily compared for applications to handle different scenarios.

Public Types

enum [anonymous]
Internal ReturnCode enumeration.

Values:

enumerator RETURN_CODE_OK = 0
Operation succeeded.

enumerator RETURN_CODE_NO_DATA = 1
No data available.

enumerator RETURN_CODE_TIMEOUT = 2
Operation timed out.

enumerator RETURN_CODE_BAD_PARAMETER = 3
Bad input parameter to function call.

enumerator RETURN_CODE_ILLEGAL_OPERATION = 4
The operation is illegal.

enumerator RETURN_CODE_UNSUPPORTED = 5
The operation is not yet supported.

enumerator RETURN_CODE_ERROR = 6
The operation failed with an unexpected error.

20 Chapter 6. API Reference

EasyNMEA Documentation, Release 0.1.0

Public Functions

ReturnCode()
Default constructor; construct a ReturnCode with value ReturnCode::RETURN_CODE_OK.

ReturnCode(uint32_t e)
Construct a return code from an integer representing the enum value.

bool operator==(const ReturnCode &c) const
Check whether a return code is equal to this one

Return true if equal; false otherwise

Parameters

• [in] c: A constant reference to the return code to compare with this one

bool operator!=(const ReturnCode &c) const
Check whether a return code is different from this one

Return true if not equal; false otherwise

Parameters

• [in] c: A constant reference to the return code to compare with this one

uint32_t operator()() const
Get the internal value of the ReturnCode

Return This ReturnCode internal value

bool operator!() const
Check whether this ReturnCode is equal to ReturnCode::RETURN_CODE_OK

Return true if this ReturnCode is different than ReturnCode::RETURN_CODE_OK ; false other-
wise

6.3. Types 21

EasyNMEA Documentation, Release 0.1.0

22 Chapter 6. API Reference

CHAPTER

SEVEN

DEVELOPER DOCUMENTATION

This section contains all the design documents of EasyNMEA. It is meant to gather all technical documentation so
that contributors to the project can understand the reasoning behind the current implementation, as well as document
the designs for their contributions to the library. Please refer to the Contributing Guidelines if you are considering
contributing to EasyNMEA.

7.1 Library Architecture

EasyNMEA is divided into three levels (from outer to inner):

1. API Level : This level contains all public API, i.e. the classes in the include directory.

2. Implementation Level: This level contains all the internal classes which provide functionality to the library.

3. Serial Interface Level: This level contains the classes for interacting with the serial port (through Asio).

23

https://github.com/EduPonz/easynmea/blob/main/CONTRIBUTING.md

EasyNMEA Documentation, Release 0.1.0

7.1.1 API Level

The API level comprises all the EasyNMEA public classes and structures, and acts as entry point for the library’s func-
tionalities. It consists of a main class EasyNmea, which provides application with access to the functionalities, and
all the supporting classes and structures for return types and input and output parameters. Those companion classes
and structures are ReturnCode, GPGGAData, and NMEA0183DataKindMask. For the actual functionality im-
plementation, EasyNmea relies on the internal class EasyNmeaImpl.

7.1.2 Implementation Level

The implementation level comprises two main components:

1. The EasyNmeaImpl class, which provides with implementation for the EasyNmea public API, i.e opening
and closing the serial port, waiting until data of one or more NMEA 0183 types has been received, checking
whether the serial port connection is opened, and taking the next unread sample of a given NMEA 0183 type.
The EasyNmeaImpl holds a FixedSizeQueue of ten elements for each supported NMEA 0183 type. This
way, keeping outdated samples, as well as dynamic allocation of data samples, is avoided. The managing of the
serial port is enabled through the SerialInterface class.

2. The EasyNmeaCoder class, which provides APIs for decode NMEA 0183 sentences (and to encode them in
the future).

24 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

7.1.3 Serial Interface Level

The serial interface level is comprised of the SerialInterface class, which provides member functions to open
and close a serial port, as well as for reading data from it. SerialInterface is a template class with a template pa-
rameter SerialPort that defines the serial port implementation, which defaults to :class: asio::serial_port.

7.1. Library Architecture 25

EasyNMEA Documentation, Release 0.1.0

7.2 Testing Infrastructure

This section documents the decisions made regarding the EasyNMEA testing infrastructure.

• Testing Framework

• Build Tests

• Directories

• Automated Testing Jobs

• Code Coverage Reporting

• Code Quality Analysis

7.2.1 Testing Framework

The EasyNMEA testing framework has to cope with the following requirements:

1. Easy to integrate with CMake

2. Easy to integrate with GitHub actions

3. Large acceptance, so new contributors can write tests effortlessly

4. Mocking capabilities. This is because at least Asio will have to be mocked

5. Extense documentation

6. Easy to find answers to common problems.

7. Should be able to be used to create tests for the documentation

To satisfy these requirements EasyNMEA uses Gtest as testing framework. This decision is taken for a number or
reasons:

1. Huge acceptance

2. Very large community, which means tons of Q&A everywhere

3. Very good documentation with examples

4. Out-of-the box mock support

5. Direct integration with CMake

6. GitHub integration merely consists on an action which installs GTest.

Other testing framework such as Catch and Boost.Test, however they were discarded:

• Catch seemed very promising, specially being a header only library, but the lack of mocking support is unfortu-
nately a no-go for EasyNMEA.

• Boost.Test, which also offers a header only version, but again, it does not have built-in mocking support.

26 Chapter 7. Developer Documentation

https://google.github.io/googletest/
https://github.com/catchorg/Catch2/tree/devel/docs
https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html

EasyNMEA Documentation, Release 0.1.0

7.2.2 Build Tests

The EasyNMEA tests can be divided into two large categories:

1. Library tests: Unit and system tests for the EasyNMEA library itself.

2. Documentation tests: Automated tests for the documentation.

Although none of these tests are built by default, it is possible to build them separately. This is because not everyone
would build the documentation. To do that, 3 CMake options are added:

1. BUILD_LIBRARY_TESTS: Builds the library tests

2. BUILD_DOCUMENTATION_TESTS: Builds the documentation tests. This entails building the documentation.

3. BUILD_TESTS: Builds all the EasyNMEA tests, meaning both library and documentation tests.

Furthermore, the system tests within the Library tests do require the installation of some extra python dependencies,
which are listed in <path_to_repo>/test/system/requirements.txt. These are necessary to simulate a serial connection
and a NMEA device. They can be installed with:

python3 install -r <path_to_repo>/test/system/requirements.txt

7.2.3 Directories

The EasyNMEA tests are held in the following directory structure:

1. <repo-root>/test/unit: For unit tests

2. <repo-root>/test/system: For system tests

3. <repo-root>/docs/test: For documentation tests

7.2.4 Automated Testing Jobs

All the EasyNMEA tests run automatically once a day for the main branch, as well as for the supported versions’
branches. Furthermore, all the tests are run whenever a pull request is opened and with every commit pushed to
an open pull request. To automate these tasks, since the public repository is hosted on GitHub, GitHub actions are
used. This tool enables to create as many workflows with as many jobs in them as desired, making it ideal for test
automation. Moreover, the jobs run on GitHub maintained servers, so the only thing we have to do is to define those
workflows. This is done in <repo-root>/.github/workflows. EasyNMEA contains the following workflows
and jobs:

• automated_testing, defined in <repo-root>/.github/workflows/automated_testing.
yml. This workflow runs on pushes to main and any other maintained branch, on pull request creation or
update, and once a day. It contains the following jobs:

– ubuntu-build-test, which runs in the latest Ubuntu distribution available. This job installs all the
necessary dependencies, builds all the tests and documentation, runs the all tests, and uploads the sphinx-
generated HTML documentation so reviewers can check it.

7.2. Testing Infrastructure 27

https://github.com/features/actions

EasyNMEA Documentation, Release 0.1.0

7.2.5 Code Coverage Reporting

As stated in Automated Testing Jobs, EasyNMEA tests are run with every push to main and supported version
branches, as well as with every push to any open pull request. This is done to make sure that every aspect of the
library works as expected, as well as to guarantee that new changes do not break any established behaviour. Code
coverage reporting takes this a step further, not only guaranteeing that all the tests pass at all times, but also checking
whether those tests reach every possible source code outcome.

This is done using compiler specific flags that report every branch generated by the compiler and reached by the tests.
These reports are then gather under one single human-readable code coverage report that is uploaded to an online
platform, which in turn can keep track of the coverage progress with changes.

Presently, the coverage reports are generated in the ubuntu-build-test job, passing specific flags to GCC. Those
flags are: --coverage, -fprofile-arcs, and -ftest-coverage. To ease the compilation, a CMake option
GCC_CODE_COVERAGE has been created, which enables the code coverage flags if the compiler used is indeed GCC.

Then, the job uses gcovr to generate a report that is uploaded to Codecov. In turn, Codecov checks the code coverage
on the changes proposed in the pull request, as well as the overall coverage. If any of those two decreases, the code
coverage check fails, and the pull request cannot be merged.

7.2.6 Code Quality Analysis

With every push to main, and with every pull request targeting it, and automated job is run to check code vulnera-
bilities using CodeQL. This job presents vulnerabilities in the form of code scanning alerts (see About code scanning
with CodeQL).

7.3 System Tests

EasyNMEA provides a set of test which execute end-to-end verification of the library’s functionalities. This is done
by simulating a NMEA device sending data to a serial port. This data is then received by a EasyNMEA application
which uses the library’s public API to open the serial connection, wait until data of any given kind is received, and log
this data for validation against expectations. For connecting the NMEA device double and the EasyNMEA application,
socat is used to create a pair of virtual serial ports, one for the double to send the data, and the other one for the
application to receive it. This way, the EasyNMEA application acts in the same way as a real application would, so
public APIs can be tested in the same manner that they would be used in real applications. The relationships between
the different system test components and the sequence of operations are shown in the following diagrams.

28 Chapter 7. Developer Documentation

https://gcc.gnu.org/
https://gcovr.com/en/stable/
https://app.codecov.io/gh/EduPonz/easynmea/
https://codeql.github.com/
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
http://www.dest-unreach.org/socat/

EasyNMEA Documentation, Release 0.1.0

7.3. System Tests 29

EasyNMEA Documentation, Release 0.1.0

1. gpgga_read_some_and_close: Open a pair of serial ports, send some valid NMEA sentences in one, and read
GPGGA data on the other. Then, first close the EasyNMEA and then close the ports. Validate results against
expectations.

2. port_closed_externally: Open a pair of serial ports, send some valid NMEA sentences in one, and read GPGGA
data on the other. Then, close the serial ports with the EasyNMEA still opened. The application should detect
this an exist gracefully. Validate results against expectations.

3. stop_sending_data: Open a pair of serial ports, send some valid NMEA sentences in one, and read GPGGA
data on the other. Stop sending data before stopping the EasyNMEA. Close the EasyNMEA, then the sending
app, and lastly close the ports. Validate results against expectations.

4. late_sending: Open a pair of serial ports. Then, first start a EasyNMEA, and after 1 second start sending
some valid NMEA sentences. Then, close the EasyNMEA before closing the ports. Validate results against
expectations.

30 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

7.4 Unit Tests

EasyNMEA provides one test suite containing unit tests for each of the library classes. These suits test each and every
public member function separately, mocking lower levels so that every possible case can be covered.

Even while the test suites provide a 100% line coverage on the classes they test, a 100% branch coverage is not
required, as the implementation may use external functions that are not marked as noexcept, for which the compiler
may generate branches that are virtually impossible to hit. It is up to the reviewers and maintainers to judge whether
the branch coverage of a specific contribution is high enough, or if more test cases are required.

7.4.1 NMEA 0183 Data Types Unit Tests

As described in API Level, the way in which EasyNmea provides applications with NMEA data is through the NMEA
0183 data types (GPGGAData). These types feature == and != operators, so that two samples of the same type can
be compared between them. Therefore, a set of unit tests for these operators of each of the types is required:

1. NMEA0183DataComparisonOperators: Checks that both comparison operators work for NMEA0183Data.

2. GPGGADataComparisonOperators: Checks that both comparison operators work for GPGGAData.

7.4.2 EasyNmea Unit Tests

As documented in API Level, EasyNmea provides applications with APIs to open and close the serial port, wait until
data of one or more NMEA 0183 types is received, check whether the serial port connection is opened, and take the
next unread sample of a given NMEA 0183 type.

The EasyNmea tests use the EasyNmeaTest class, which derives from EasyNmea, adding the possi-
bility of substituting the EasyNmeaImpl with another instance. This enables the tests to implement a
EasyNmeaImplMock, which derives from EasyNmeaImpl, mocking away the EasyNmeaImpl::open(),
EasyNmeaImpl::is_open(), EasyNmeaImpl::close(), EasyNmeaImpl::wait_for_data(), and
EasyNmeaImpl::take_next() functions. This way, the tests can substitute the EasyNmeaImpl instance
in EasyNmeaTest with an instance of EasyNmeaImplMock on which expectations can be set, and then check
whether EasyNmea behaves as expected depending on the EasyNmeaImpl returned values.

7.4. Unit Tests 31

EasyNMEA Documentation, Release 0.1.0

• open()

• is_open()

• close()

• take_next()

• wait_for_data()

open()

1. openOk: Check that EasyNmea::open() passes the correct arguments to EasyNmeaImpl::open(),
and that it returns ReturnCode::RETURN_CODE_OK whenever EasyNmeaImpl::open() does so.

2. openError: Check that EasyNmea::open() passes the correct arguments to EasyNmeaImpl::open(),
and that it returns ReturnCode::RETURN_CODE_ERROR whenever EasyNmeaImpl::open() does so.

3. openIllegal: Check that EasyNmea::open() passes the correct arguments to EasyNmeaImpl::open(),
and that it returns ReturnCode::RETURN_CODE_ILLEGAL_OPERATION whenever
EasyNmeaImpl::open() does so.

32 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

is_open()

1. is_openOpened: Check that EasyNmea::is_open() returns true when a connection is opened.

2. is_openClosed: Check that EasyNmea::is_open() returns false when a connection is closed.

close()

1. closeOk: Check that EasyNmea::close() returns ReturnCode::RETURN_CODE_OK when an opened
port is closed correctly.

2. closeError: Check that EasyNmea::close() returns ReturnCode::RETURN_CODE_ERROR when an
opened port cannot be closed correctly.

3. closeIllegal: Check that EasyNmea::close() returns ReturnCode::RETURN_CODE_ILLEGAL_OPERATION
when attempting to close an already closed port.

take_next()

1. take_nextOk: Check that EasyNmea::take_next() calls to EasyNmeaImpl::take_next()
with the appropriate arguments, and that if returns ReturnCode::RETURN_CODE_OK whenever
EasyNmeaImpl::take_next() does so. Furthermore, check that the data output is the sample output
by EasyNmeaImpl::take_next().

2. take_nextNoData: Check that EasyNmea::take_next() calls to EasyNmeaImpl::take_next()
with the appropriate arguments, and that if returns ReturnCode::RETURN_CODE_OK whenever
EasyNmeaImpl::take_next() does so. Furthermore, check that the data output is equal to the input.

wait_for_data()

1. wait_for_dataOk: Check that EasyNmeaImpl::wait_for_data() is called with the appropriate argu-
ments, and that EasyNmea::wait_for_data() returns ReturnCode::RETURN_CODE_OK whenever
EasyNmeaImpl::wait_for_data() does so.

2. wait_for_dataTimeout: Check that EasyNmeaImpl::wait_for_data() is called
with the appropriate arguments, and that EasyNmea::wait_for_data() returns
ReturnCode::RETURN_CODE_TIMEOUT whenever EasyNmeaImpl::wait_for_data() does
so.

3. wait_for_dataTimeoutDefault: The difference with wait_for_dataTimeout os that in this case,
EasyNmea::wait_for_data() is called leaving the timeout as default.

4. wait_for_dataIllegal: Check that EasyNmeaImpl::wait_for_data() is
called with the appropriate arguments, and that EasyNmea::wait_for_data()
returns ReturnCode::RETURN_CODE_ILLEGAL_OPERATION whenever
EasyNmeaImpl::wait_for_data() does so.

5. wait_for_dataError: Check that EasyNmeaImpl::wait_for_data() is called with the appropriate
arguments, and that EasyNmea::wait_for_data() returns ReturnCode::RETURN_CODE_ERROR
whenever EasyNmeaImpl::wait_for_data() does so.

7.4. Unit Tests 33

EasyNMEA Documentation, Release 0.1.0

7.4.3 EasyNmeaCoder Unit Tests

As documented in Implementation Level, EasyNmeaCoder provides APIs for decoding NMEA 0183 supported
sentences, specifically EasyNmeaCoder::decode(). This member function takes a NMEA 0183 sentence as a
string and returns a std::shared_ptr to a NMEA0183Data, which NMEA0183DataKind field can be used to
cast it into the appropriate NMEA 0183 data structure. This set of tests target the EasyNmeaCoder::decode()
function, passing different sentences and checking the return against expected outputs.

• decode()

decode()

1. decodeGPGGAValidNE

2. decodeGPGGAValidNW

3. decodeGPGGAValidSE

4. decodeGPGGAValidSW

5. decodeGPGGAValidNoAgeOfDiffGPS

6. decodeGPGGAValidEmptyAgeOfDiffGPSNoDiffRefStation

7. decodeGPGGAValidNoDiffRefStation

8. decodeGPGGAValidNoOptionals

9. decodeGPGGAInvalidTime

10. decodeGPGGAInvalidLatitudeLength

34 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

11. decodeGPGGAInvalidLatitudeDegrees

12. decodeGPGGAInvalidLatitudeMinutes

13. decodeGPGGAInvalidLongitudeLength

14. decodeGPGGAInvalidLongitudeDegrees

15. decodeGPGGAInvalidLongitudeMinutes

16. decodeGPGGAInvalidAltitudeUnits

17. decodeGPGGAInvalidHeightUnits

18. decodeGPGGAInvalidChecksum

19. decodeGPGGANoTime

20. decodeGPGGANoLatitude

21. decodeGPGGANoLongitude

22. decodeGPGGANoFix

23. decodeGPGGANoNumberOfSatellites

24. decodeGPGGANoHDOP

25. decodeGPGGANoAltitude

26. decodeGPGGANoHeight

27. decodeGPGGANoChecksum

28. decodeInvalidSentenceID

29. decodeUnsupportedSentence

30. decodeEmptySentence

31. decodeOnlyChecksumSentence

32. decodeOnlyAstheriscSentence

7.4.4 EasyNmeaImpl Unit Tests

As documented in Implementation Level, EasyNmeaImpl provides with the implementation for the EasyNmea
public API, namely opening and closing the serial port, waiting until data of one or more NMEA 0183 types has been
received, checking whether the serial port connection is opened, and taking the next unread sample of a given NMEA
0183 type.

The EasyNmeaImpl tests use the EasyNmeaImplTest class, which derives from EasyNmeaImpl, adding
the possibility of substituting the SerialInterface with another instance. This enables the tests
to implement a SerialInterfaceMock, which derives from SerialInterface, mocking away the
SerialInterface::open(), SerialInterface::is_open(), SerialInterface::close(), and
SerialInterface::read_line() functions. This way, the tests can substitute the SerialInterface in-
stance in EasyNmeaImplTest with an instance of SerialInterfaceMock on which expectations can be set,
and then check whether EasyNmeaImpl behaves as expected depending on the SerialInterface returned val-
ues.

7.4. Unit Tests 35

EasyNMEA Documentation, Release 0.1.0

• open()

• is_open()

• close()

• wait_for_data()

• take_next()

• ~EasyNmeaImpl()

open()

1. openSuccess: Opens a not previously opened EasyNmeaImpl. The return is expected to be
ReturnCode::RETURN_CODE_OK.

2. openOpened: Attempts to open an already opened EasyNmeaImpl. This is simulated by
forcing SerialInterface::is_open() to return true. The return is expected to be
ReturnCode::RETURN_CODE_ILLEGAL_OPERATION .

3. openWrongPort: Attempts to open a EasyNmeaImpl on an invalid port. This is simu-
lated by forcing SerialInterface::open() to return false. The return is expected to be
ReturnCode::RETURN_CODE_ERROR.

is_open()

1. is_openOpened: Check that whenever SerialInterface::is_open() returns true,
EasyNmeaImpl::is_open() also returns true.

2. is_openClosed: Check that whenever SerialInterface::is_open() returns false,
EasyNmeaImpl::is_open() also returns false. Furthermore, this test also checks that
EasyNmeaImpl::is_open() returns false whenever the underlying pointer to SerialInterface is
nullptr.

36 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

close()

1. closeSuccess: Check that whenever SerialInterface reports that a port is opened at first, and then
return true on the call to SerialInterface::close(), then EasyNmeaImpl::close() returns
ReturnCode::RETURN_CODE_OK.

2. closeError: Check that whenever SerialInterface reports that a port is opened at first, and then re-
turn false on the call to SerialInterface::close(), then EasyNmeaImpl::close() returns
ReturnCode::RETURN_CODE_ERROR.

3. closeClosed: Check that calling EasyNmeaImpl::close() on a non-opened EasyNmeaImpl returns
ReturnCode::RETURN_CODE_ILLEGAL_OPERATION .

wait_for_data()

1. wait_for_dataData: Check that EasyNmeaImpl::wait_for_data() returns
ReturnCode::RETURN_CODE_OK when a sentence which type specified in the
NMEA0183DataKindMask mask is received. Furthermore, check that the output mask has the corre-
sponding bit correctly set.

2. wait_for_dataClosed: Check that EasyNmeaImpl::wait_for_data() returns
ReturnCode::RETURN_CODE_ILLEGAL_OPERATION when called on a closed EasyNmeaImpl.

3. wait_for_dataDataEmptyMask: Check that EasyNmeaImpl::wait_for_data() will return
ReturnCode::RETURN_CODE_TIMEOUT after timing out when an empty NMEA0183DataKindMask
is passed, even when data from any of the supported types has been received. It also checks that the output
NMEA0183DataKindMask is set to none.

4. wait_for_dataError: Check that whenever SerialInterface::read_line() returns false, the call to
EasyNmeaImpl::wait_for_data() unblocks and returns ReturnCode::RETURN_CODE_ERROR. It
also checks that the output NMEA0183DataKindMask is set to none.

take_next()

1. take_next: Check that whenever EasyNmeaImpl::wait_for_data() returns
ReturnCode::RETURN_CODE_OK, then, data can be taken with EasyNmeaImpl::take_next(),
which returns ReturnCode::RETURN_CODE_OK. Furthermore, it tests that other NMEA 0183 valid
sentences are not returned nor reported to be have been received, and that incomplete GPGGA sentences are
not returned nor reported either.

~EasyNmeaImpl()

1. destroyNoClose: Checks that letting an opened EasyNmeaImpl instance go out of scope without calling
EasyNmeaImpl::close() is alright.

7.4. Unit Tests 37

EasyNMEA Documentation, Release 0.1.0

7.4.5 SerialInterface Unit Tests

As documented in Serial Interface Level, SerialInterface provides functions to open, close, and read from
serial ports using Asio. The SerialInterface tests use a SerialInterfaceTest class which derives from
SerialInterface specialized in SerialPortMock, which mocks asio::serial_port.

1. Since SerialInterfaceTest creates its SerialPortMock in the constructor, no expectations can be set
to that object. For this reason, SerialInterfaceTest provides a set_serial_port() public member
function that can be used to substitute the SerialPortMock instance with one on which expectations have
been set.

2. To be able to construct this SerialPortMock, a getter io_service() is also provided.

3. Some tests need to mock SerialPort::read_some() (asio::serial_port::read_some())
so that SerialInterface::read_line() returns a specific std::string. To that end,
SerialInterface wraps the call to SerialPort::read_some() with a read_char(), which
SerialInterface::read_line() calls to perform the actual read from the port. Since
for unit testing purposes SerialPortMock is used instead of asio::serial_port, a mock
SerialPortMock::read_some() would be needed. However, due to the function’s signature, it
is not possible to set expectations on the read characters. This has led to SerialInterfaceTest
overriding SerialInterface::read_char() with an overload that either simply calls to the
SerialInterface::read_char() implementation, or returns a character from a string. To do
this, SerialInterfaceTest provides a set_msg() function that is used to set the line that
read_line will read. To enable SerialInterfaceTest::read_char() to read characters from
the set message instead of using read_some(), a use_parent_read_char() is provided. By
default, SerialInterfaceTest::read_char() will call SerialInterface::read_char()
(which calls read_some()), however, if the use_parent_read_char_ flag is set (calling
use_parent_read_char(false)), then SerialInterfaceTest::read_char() will read the
characters of the set message one at a time (simulating reading characters one by one from the serial port).

• open()

• is_open()

• close()

• read_line()

38 Chapter 7. Developer Documentation

EasyNMEA Documentation, Release 0.1.0

open()

1. openSuccess: Opens a not previously opened serial port with a valid port and baudrate. The return is expected
to be true

2. openOpened: Attempts to open an already opened port. The return is expected to be false.

3. openWrongPort: Attempts to open a port on an invalid port. The return is expected to be false.

4. openWrongBaudrate: Attempts to set a non valid baudrate to the serial port. The return is expected to be
false.

is_open()

1. is_openOpened: Checks whether SerialInterface::is_open() returns true for an open port.

2. is_openClosed: Checks whether SerialInterface::is_open() returns false for an closed port.

close()

1. closeSuccess: Closes an already opened port. The return is expected to be true.

2. closeClosed: Closes an already closed port. The return is expected to be true.

3. closeAsioError: Attempts to close an open port that Asio cannot close. The return is expected to be false.

read_line()

1. read_lineSuccess: Checks that lines ending in \n or \r\n are returned correctly. The return is expected to
be true. This test is performed on an opened serial port. Furthermore, the function should be called with an
empty string, as well as with a non-empty one. Both cases should output just the read line without any characters
that it had on calling SerialInterface::read_line().

2. read_lineClosed: Checks that calling SerialInterface::read_line() on a closed port returns
false.

3. read_lineReadError: Simulates that asio::serial_port::read_some() returns an error and checks that in
the case, the SerialInterface::read_line() return is false. This test covers the case when
asio::serial_port::close() is called while blocked on asio::serial_port::read_some(), since that breaks the block,
making asio::serial_port::read_some() return with a not OK asio::error_code.

7.5 Documentation Testing

This section describes the tests implemented for the EasyNMEA documentation:

1. easynmea-documentation-test: An executable generated to check that all code snippets in the docu-
mentation compile. This way, whenever we make an API change, we will be forced to update the documentation
to reflect it, and in that way we make sure that all the code in the documentation is up to date.

2. documentation.line_length: RST files usually have a line length no longer than 120 characters. Doc8
is used to check this for every RST file with argument –max-line-length 120.

3. documentation.spell_check: A spelling check for the documentation. Sphinx builder spelling supports
this, plus it also adds the possibility to have one or more custom dictionaries for words that the builder otherwise
considers not correct.

7.5. Documentation Testing 39

EasyNMEA Documentation, Release 0.1.0

4. documentation.link_check: Checks that all documentation hyperlinks are valid. Sphinx supports this
using linkcheck builder.

As defined in Directories, these tests are located in <repo-root>/docs/test. Furthermore, it is possible to activate them
with CMake option BUILD_DOCUMENTATION_TESTS (see Build Tests).

EasyNMEA is an open source, free-to-use cross-platform C++ library to retrieve Global Navigation Satellite System
(GNSS) information from GNSS modules which communicate with NMEA 0183 over serial. It can retrieve GNSS
data from any GNSS device sending NMEA 0183 sentences using serial communication.

EasyNMEA provides a lightweight and easy-to-use API with which applications can wait until data of any of the
supported NMEA 0183 sentences is received, and then retrieve it in an understandable manner without the need of
knowing the inner details of the NMEA 0183 protocol.

The source code is hosted on GitHub, check it out!

40 Chapter 7. Developer Documentation

https://en.wikipedia.org/wiki/Satellite_navigation
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://github.com/EduPonz/easynmea

INDEX

E
eduponz::easynmea::Bitmask (C++ class), 19
eduponz::easynmea::EasyNmea (C++ class), 15
eduponz::easynmea::EasyNmea::~EasyNmea

(C++ function), 15
eduponz::easynmea::EasyNmea::close (C++

function), 16
eduponz::easynmea::EasyNmea::EasyNmea

(C++ function), 15
eduponz::easynmea::EasyNmea::is_open

(C++ function), 16
eduponz::easynmea::EasyNmea::open (C++

function), 15
eduponz::easynmea::EasyNmea::take_next

(C++ function), 16
eduponz::easynmea::EasyNmea::wait_for_data

(C++ function), 16
eduponz::easynmea::GPGGAData (C++ struct),

18
eduponz::easynmea::GPGGAData::altitude

(C++ member), 18
eduponz::easynmea::GPGGAData::dgps_last_update

(C++ member), 18
eduponz::easynmea::GPGGAData::dgps_reference_station_id

(C++ member), 19
eduponz::easynmea::GPGGAData::fix (C++

member), 18
eduponz::easynmea::GPGGAData::GPGGAData

(C++ function), 18
eduponz::easynmea::GPGGAData::height_of_geoid

(C++ member), 18
eduponz::easynmea::GPGGAData::horizontal_precision

(C++ member), 18
eduponz::easynmea::GPGGAData::latitude

(C++ member), 18
eduponz::easynmea::GPGGAData::longitude

(C++ member), 18
eduponz::easynmea::GPGGAData::operator!=

(C++ function), 18
eduponz::easynmea::GPGGAData::operator==

(C++ function), 18
eduponz::easynmea::GPGGAData::satellites_on_view

(C++ member), 18
eduponz::easynmea::GPGGAData::timestamp

(C++ member), 18
eduponz::easynmea::NMEA0183Data (C++

struct), 17
eduponz::easynmea::NMEA0183Data::~NMEA0183Data

(C++ function), 17
eduponz::easynmea::NMEA0183Data::kind

(C++ member), 17
eduponz::easynmea::NMEA0183Data::NMEA0183Data

(C++ function), 17
eduponz::easynmea::NMEA0183Data::operator!=

(C++ function), 17
eduponz::easynmea::NMEA0183Data::operator==

(C++ function), 17
eduponz::easynmea::NMEA0183DataKind

(C++ enum), 20
eduponz::easynmea::NMEA0183DataKind::GPGGA

(C++ enumerator), 20
eduponz::easynmea::NMEA0183DataKind::INVALID

(C++ enumerator), 20
eduponz::easynmea::NMEA0183DataKindMask

(C++ type), 20
eduponz::easynmea::ReturnCode (C++ class),

20
eduponz::easynmea::ReturnCode::operator!

(C++ function), 21
eduponz::easynmea::ReturnCode::operator!=

(C++ function), 21
eduponz::easynmea::ReturnCode::operator()

(C++ function), 21
eduponz::easynmea::ReturnCode::operator==

(C++ function), 21
eduponz::easynmea::ReturnCode::ReturnCode

(C++ function), 21
eduponz::easynmea::ReturnCode::[anonymous]

(C++ enum), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_BAD_PARAMETER

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_ERROR

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_ILLEGAL_OPERATION

41

EasyNMEA Documentation, Release 0.1.0

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_NO_DATA

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_OK

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_TIMEOUT

(C++ enumerator), 20
eduponz::easynmea::ReturnCode::[anonymous]::RETURN_CODE_UNSUPPORTED

(C++ enumerator), 20

42 Index

	Getting Started
	Run docker knowing the specific serial device
	Run docker allowing for plug-unplug connectivity

	Installation
	Build and Install on Ubuntu
	Prerequisites
	Dependencies
	Build
	Install

	Build and Install on Windows
	Prerequisites
	Dependencies
	Build
	Install

	Build and Install Documentation
	Environment Setup
	Build
	Install
	Simulate Read The Docs Build

	CMake Options

	Usage
	NMEA 0183 Data Types
	GPGGA

	Build and Run Examples
	Build Examples
	GPGGA Example

	API Reference
	EasyNmea
	NMEA 0183 Data Types
	NMEA0183Data
	GPGGAData

	Types
	Bitmask
	NMEA0183DataKind
	NMEA0183DataKindMask
	ReturnCode

	Developer Documentation
	Library Architecture
	API Level
	Implementation Level
	Serial Interface Level

	Testing Infrastructure
	Testing Framework
	Build Tests
	Directories
	Automated Testing Jobs
	Code Coverage Reporting
	Code Quality Analysis

	System Tests
	Unit Tests
	NMEA 0183 Data Types Unit Tests
	EasyNmea Unit Tests
	EasyNmeaCoder Unit Tests
	EasyNmeaImpl Unit Tests
	SerialInterface Unit Tests

	Documentation Testing

	Index

